65 research outputs found

    Intrinsically Motivated Reinforcement Learning based Recommendation with Counterfactual Data Augmentation

    Full text link
    Deep reinforcement learning (DRL) has been proven its efficiency in capturing users' dynamic interests in recent literature. However, training a DRL agent is challenging, because of the sparse environment in recommender systems (RS), DRL agents could spend times either exploring informative user-item interaction trajectories or using existing trajectories for policy learning. It is also known as the exploration and exploitation trade-off which affects the recommendation performance significantly when the environment is sparse. It is more challenging to balance the exploration and exploitation in DRL RS where RS agent need to deeply explore the informative trajectories and exploit them efficiently in the context of recommender systems. As a step to address this issue, We design a novel intrinsically ,otivated reinforcement learning method to increase the capability of exploring informative interaction trajectories in the sparse environment, which are further enriched via a counterfactual augmentation strategy for more efficient exploitation. The extensive experiments on six offline datasets and three online simulation platforms demonstrate the superiority of our model to a set of existing state-of-the-art methods

    Computational intelligence-enabled cybersecurity for the Internet of Things

    Get PDF
    The computational intelligence (CI) based technologies play key roles in campaigning cybersecurity challenges in complex systems such as the Internet of Things (IoT), cyber-physical-systems (CPS), etc. The current IoT is facing increasingly security issues, such as vulnerabilities of IoT systems, malware detection, data security concerns, personal and public physical safety risk, privacy issues, data storage management following the exponential growth of IoT devices. This work aims at investigating the applicability of computational intelligence techniques in cybersecurity for IoT, including CI-enabled cybersecurity and privacy solutions, cyber defense technologies, intrusion detection techniques, and data security in IoT. This paper also attempts to provide new research directions and trends for the increasingly IoT security issues using computational intelligence technologies

    An LSH-based offloading method for IoMT services in integrated cloud-edge environment

    Get PDF
    © 2021 ACM. Benefiting from the massive available data provided by Internet of multimedia things (IoMT), enormous intelligent services requiring information of various types to make decisions are emerging. Generally, the IoMT devices are equipped with limited computing power, interfering with the process of computation-intensive services. Currently, to satisfy a wide range of service requirements, the novel computing paradigms, i.e., cloud computing and edge computing, can potentially be integrated for service accommodation. Nevertheless, the private information (i.e., location, service type, etc.) in the services is prone to spilling out during service offloading in the cloud-edge computing. To avoid privacy leakage while improving service utility, including the service response time and energy consumption for service executions, a Locality-sensitive-hash (LSH)-based offloading method, named LOM, is devised. Specifically, LSH is leveraged to encrypt the feature information for the services offloaded to the edge servers with the intention of privacy preservation. Eventually, comparative experiments are conducted to verify the effectiveness of LOM with respect to promoting service utility

    A Distributed Locality-Sensitive Hashing-Based Approach for Cloud Service Recommendation From Multi-Source Data

    Get PDF
    To maximize the economic benefits, a cloud service provider needs to recommend its services to as many users as possible based on the historical user-service quality data. However, when a cloud platform (e.g., Amazon) intends to make a service recommendation decision, considering only its own user-service quality data is insufficient, because a cloud user may invoke services from multiple distributed cloud platforms (e.g., Amazon and IBM). In this situation, it is promising for Amazon to collaborate with other cloud platforms (e.g., IBM) to utilize the integrated data for the service recommendation to improve the recommendation accuracy. However, two challenges are present in the above-mentioned collaboration process, where we attempt to use multi-source data for the service recommendation. First, protecting users’ privacy is challenging when IBM releases its own data to Amazon. Second, the recommendation efficiency and scalability are often low when the user-service quality data of Amazon and IBM update frequently. Considering these challenges, a privacy-preserving and scalable service recommendation approach based on distributed locality-sensitive hashing, i.e., SerRecdistri-LSH , is proposed in this paper to handle the service recommendation in a distributed cloud environment. Extensive experiments on the WS-DREAM data set validate the feasibility of our approach in terms of service recommendation accuracy, scalability, and privacy preservation

    An IoT-oriented data placement method with privacy preservation in cloud environment

    Get PDF
    © 2018 Elsevier Ltd IoT (Internet of Things) devices generate huge amount of data which require rich resources for data storage and processing. Cloud computing is one of the most popular paradigms to accommodate such IoT data. However, the privacy conflicts combined in the IoT data makes the data placement problem more complicated, and the resource manager needs to take into account the resource efficiency, the power consumption of cloud data centers, and the data access time for the IoT applications while allocating the resources for the IoT data. In view of this challenge, an IoT-oriented Data Placement method with privacy preservation, named IDP, is designed in this paper. Technically, the resource utilization, energy consumption and data access time in the cloud data center with the fat-tree topology are analyzed first. Then a corresponding data placement method, based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II), is designed to achieve high resource usage, energy saving and efficient data access, and meanwhile realize privacy preservation of the IoT data. Finally, extensive experimental evaluations validate the efficiency and effectiveness of our proposed method

    Socially Beneficial Metaverse: Framework, Technologies, Applications, and Challenges

    Full text link
    In recent years, the maturation of emerging technologies such as Virtual Reality, Digital twins, and Blockchain has accelerated the realization of the metaverse. As a virtual world independent of the real world, the metaverse will provide users with a variety of virtual activities that bring great convenience to society. In addition, the metaverse can facilitate digital twins, which offers transformative possibilities for the industry. Thus, the metaverse has attracted the attention of the industry, and a huge amount of capital is about to be invested. However, the development of the metaverse is still in its infancy and little research has been undertaken so far. We describe the development of the metaverse. Next, we introduce the architecture of the socially beneficial metaverse (SB-Metaverse) and we focus on the technologies that support the operation of SB-Metaverse. In addition, we also present the applications of SB-Metaverse. Finally, we discuss several challenges faced by SB-Metaverse which must be addressed in the future.Comment: 28 pages, 6 figures, 3 table

    Privacy-preserving distributed service recommendation based on locality-sensitive hashing

    Get PDF
    With the advent of IoT (Internet of Things) age, considerable web services are emerging rapidly in service communities, which places a heavy burden on the target users’ service selection decisions. In this situation, various techniques, e.g., collaborative filtering (i.e., CF) is introduced in service recommendation to alleviate the service selection burden. However, traditional CF-based service recommendation approaches often assume that the historical user-service quality data is centralized, while neglect the distributed recommendation situation. Generally, distributed service recommendation involves inevitable message communication among different parties and hence, brings challenging efficiency and privacy concerns. In view of this challenge, a novel privacy-preserving distributed service recommendation approach based on Locality-Sensitive Hashing (LSH), i.e., DistSRLSH is put forward in this paper. Through LSH, DistSRLSH can achieve a good tradeoff among service recommendation accuracy, privacy-preservation and efficiency in distributed environment. Finally, through a set of experiments deployed on WS-DREAM dataset, we validate the feasibility of our proposal in handling distributed service recommendation problems

    OptIForest: Optimal Isolation Forest for Anomaly Detection

    Full text link
    Anomaly detection plays an increasingly important role in various fields for critical tasks such as intrusion detection in cybersecurity, financial risk detection, and human health monitoring. A variety of anomaly detection methods have been proposed, and a category based on the isolation forest mechanism stands out due to its simplicity, effectiveness, and efficiency, e.g., iForest is often employed as a state-of-the-art detector for real deployment. While the majority of isolation forests use the binary structure, a framework LSHiForest has demonstrated that the multi-fork isolation tree structure can lead to better detection performance. However, there is no theoretical work answering the fundamentally and practically important question on the optimal tree structure for an isolation forest with respect to the branching factor. In this paper, we establish a theory on isolation efficiency to answer the question and determine the optimal branching factor for an isolation tree. Based on the theoretical underpinning, we design a practical optimal isolation forest OptIForest incorporating clustering based learning to hash which enables more information to be learned from data for better isolation quality. The rationale of our approach relies on a better bias-variance trade-off achieved by bias reduction in OptIForest. Extensive experiments on a series of benchmarking datasets for comparative and ablation studies demonstrate that our approach can efficiently and robustly achieve better detection performance in general than the state-of-the-arts including the deep learning based methods.Comment: This paper has been accepted by International Joint Conference on Artificial Intelligence (IJCAI-23
    • …
    corecore